Search results for "Higgs field"

showing 10 items of 56 documents

Spacetime curvature and Higgs stability after inflation

2015

We investigate the dynamics of the Higgs field at the end of inflation in the minimal scenario consisting of an inflaton field coupled to the Standard Model only through the non-minimal gravitational coupling $\xi$ of the Higgs field. Such a coupling is required by renormalisation of the Standard Model in curved space, and in the current scenario also by vacuum stability during high-scale inflation. We find that for $\xi\gtrsim 1$, rapidly changing spacetime curvature at the end of inflation leads to significant production of Higgs particles, potentially triggering a transition to a negative-energy Planck scale vacuum state and causing an immediate collapse of the Universe.

General PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)spacetime curvaturePhysics MultidisciplinaryVacuum stateFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciences09 Engineeringrenormalizationvacuum stateStandard ModelGravitationGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)vacuum stability0103 physical sciencesPARTICLE-PRODUCTIONELECTROWEAK VACUUMHiggs fieldHiggs particles010306 general physics01 Mathematical SciencesPlanck scalePhysicsInflation (cosmology)Science & Technology02 Physical SciencesQuantum field theory in curved spacetimeta114010308 nuclear & particles physicsPhysicsHigh Energy Physics::Phenomenologyhep-phInflatonFIELDSThe Standard ModelCREATIONHiggs fieldHigh Energy Physics - PhenomenologyPhysical Sciencesastro-ph.COHiggs bosonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Elementary Goldstone Higgs boson and dark matter

2015

We investigate a perturbative extension of the Standard Model featuring elementary pseudo-Goldstone Higgs and dark matter particles. These are two of the five Goldstone bosons parametrising the SU(4)/Sp(4) coset space. They acquire masses, and therefore become pseudo-Goldstone bosons, due to the embedding of the Yukawa and the electroweak gauge interactions that do not preserve the full SU(4) symmetry. At the one-loop order the top corrections dominate and align the vacuum in the direction where the Higgs is mostly a pseudo-Goldstone boson. Because of the perturbative and elementary nature of the theory, the quantum corrections are precisely calculable. The remaining pseudo-Goldstone boson …

High Energy Physics - TheoryNuclear and High Energy PhysicsParticle physicsHiggs bosonHigh Energy Physics::LatticeFOS: Physical sciencesElementary particleTechnicolor01 natural sciencesdark matterStandard Modelsymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)Goldstone bosons0103 physical sciences010306 general physicsCondensed Matter::Quantum GasesPhysicsGauge bosonta114relic densityelectroweak interaction010308 nuclear & particles physicshep-thHigh Energy Physics::Phenomenologyhep-phHigh Energy Physics - PhenomenologyHiggs fieldscalar particleHigh Energy Physics - Theory (hep-th)symbolsHiggs bosonLHCHiggs mechanismMinimal Supersymmetric Standard ModelPhysical Review D
researchProduct

2017

We show that the dynamics of the Higgs field during inflation is not affected by metric fluctuations if the Higgs is an energetically subdominant light spectator. For Standard Model parameters we find that couplings between Higgs and metric fluctuations are suppressed by $\mathcal{O}(10^{-7})$. They are negligible compared to both pure Higgs terms in the effective potential and the unavoidable non-minimal Higgs coupling to background scalar curvature. The question of the electroweak vacuum instability during high energy scale inflation can therefore be studied consistently using the Jordan frame action in a Friedmann--Lemaitre--Robertson--Walker metric, where the Higgs-curvature coupling en…

Inflation (cosmology)PhysicsParticle physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyElectroweak interactionScalar (mathematics)Astronomy and Astrophysics01 natural sciencesStandard ModelGeneral Relativity and Quantum CosmologyHiggs field0103 physical sciencesMetric (mathematics)Higgs bosonHigh Energy Physics::Experiment010306 general physicsScalar curvatureJournal of Cosmology and Astroparticle Physics
researchProduct

The X-Ray Transform for Connections in Negative Curvature

2016

We consider integral geometry inverse problems for unitary connections and skew-Hermitian Higgs fields on manifolds with negative sectional curvature. The results apply to manifolds in any dimension, with or without boundary, and also in the presence of trapped geodesics. In the boundary case, we show injectivity of the attenuated ray transform on tensor fields with values in a Hermitian bundle (i.e. vector valued case). We also show that a connection and Higgs field on a Hermitian bundle are determined up to gauge by the knowledge of the parallel transport between boundary points along all possible geodesics. The main tools are an energy identity, the Pestov identity with a unitary connect…

Mathematics - Differential GeometryPure mathematicsHermitian bundlesGeodesic[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Connection (vector bundle)Boundary (topology)Dynamical Systems (math.DS)X-ray transforms01 natural sciencesinversio-ongelmatHiggs fieldsTensor fieldMathematics - Analysis of PDEsFOS: MathematicsSectional curvatureMathematics - Dynamical Systems0101 mathematicsmath.APMathematical PhysicsPhysicsX-ray transformParallel transport010102 general mathematicsStatistical and Nonlinear Physicsconnections010101 applied mathematicsHiggs fieldmath.DGDifferential Geometry (math.DG)[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]Mathematics::Differential Geometrymath.DSAnalysis of PDEs (math.AP)[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP]Communications in Mathematical Physics
researchProduct

A search for invisible Higgs bosons produced in e+e- interactions at LEP 2 energies

1999

Searches for HZ production with the Higgs boson decaying into an invisible final state have been performed with the data collected by the DELPHI experiment up to the centre-of-mass energy of 183 GeV. The hadronic and muon pair final states of the Z boson were analysed. From the absence of signal, upper limits on the cross-section and the corresponding Higgs boson mass limits were set at 95% confidence level. The results are interpreted as excluded parameter regions in the framework of the minimal supersymmetric standard model and in the simplest Majoron model with one Higgs doublet and one Higgs singlet field. (C) 1999 Elsevier Science B.V. All rights reserved.

Nuclear and High Energy PhysicsParticle physicsCOLLISIONSVIOLATIONSTANDARD MODELMASS01 natural sciencesDECAYSPartícules (Física nuclear)Standard ModelNuclear physicsPHYSICSsymbols.namesakeMONTE-CARLO0103 physical sciencesPROGRAM[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]STANDARD MODEL; MONTE-CARLO; PHYSICS; DECAYS; PROGRAM; SUPERSYMMETRY; COLLISIONS; VIOLATION; PARTICLE; MASS010306 general physicsSUPERSYMMETRYBosonMajoronDELPHIPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologySupersymmetryLARGE ELECTRON POSITRON COLLIDERHiggs fieldPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIsymbolsHiggs bosonPARTICLE PHYSICSFísica nuclearHigh Energy Physics::ExperimentPARTICLEHiggs mechanismParticle Physics - ExperimentMinimal Supersymmetric Standard Model
researchProduct

Higgs-Inflaton Mixing and Vacuum Stability

2019

The quartic and trilinear Higgs field couplings to an additional real scalar are renormalizable, gauge and Lorentz invariant. Thus, on general grounds, one expects such couplings between the Higgs and an inflaton in quantum field theory. In particular, the (often omitted) trilinear coupling is motivated by the need for reheating the Universe after inflation, whereby the inflaton decays into the Standard Model (SM) particles. Such a coupling necessarily leads to the Higgs-inflaton mixing, which could stabilize the electroweak vacuum by increasing the Higgs self-coupling. We find that the inflationary constraints on the trilinear coupling are weak such that the Higgs-inflaton mixing up to ord…

Nuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)cosmic inflationPhysics beyond the Standard ModelHigh Energy Physics::LatticeSTANDARD MODELFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsLorentz covariance01 natural sciences114 Physical sciencesHiggs inlationGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)Higgs-inflaton couplings0103 physical sciences010306 general physicsquantum field theorykosminen inflaatioInflation (cosmology)Physicsta114010308 nuclear & particles physicsElectroweak interactionHigh Energy Physics::PhenomenologyBOSONInflatonlcsh:QC1-999Standard Model (mathematical formulation)Higgs fieldHigh Energy Physics - PhenomenologyHiggs bosonHigh Energy Physics::Experimentkvanttikenttäteorialcsh:PhysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Fully Differential Higgs Pair Production in Association With a $W$ Boson at Next-to-Next-to-Leading Order in QCD

2017

To clarify the electroweak symmetry breaking mechanism, we need to probe the Higgs self-couplings, which can be measured in Higgs pair productions. The associated production with a vector boson is special due to a clear tag in the final state. We perform a fully differential next-to-next-to-leading-order calculation of the Higgs pair production in association with a $W$ boson at hadron colliders, and present numerical results at the 14 TeV LHC and a future 100 TeV hadron collider.

Nuclear and High Energy PhysicsParticle physicsFOS: Physical sciencesTechnicolor01 natural sciencesVector bosonHigh Energy Physics - ExperimentNuclear physicssymbols.namesakeHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsPhysicsLarge Hadron Collider010308 nuclear & particles physicsElectroweak interactionHigh Energy Physics::Phenomenologylcsh:QC1-999Higgs fieldHigh Energy Physics - PhenomenologyPair productionsymbolsHiggs bosonHigh Energy Physics::ExperimentHiggs mechanismlcsh:Physics
researchProduct

10.8 Conclusion

2008

Nuclear physicsPhysicsHiggs fieldParticle physicsBaryon asymmetryPontecorvo–Maki–Nakagawa–Sakata matrixCP violationCosmology
researchProduct

Postinflationary vacuum instability and Higgs-inflaton couplings

2016

The Higgs-inflaton coupling plays an important role in the Higgs field dynamics in the early Universe. Even a tiny coupling generated at loop level can have a dramatic effect on the fate of the electroweak vacuum. Such Higgs-inflaton interaction is present both at the trilinear and quartic levels in realistic reheating models. In this work, we examine the Higgs dynamics during the preheating epoch, focusing on the effects of the parametric and tachyonic resonances. We use lattice simulations and other numerical tools in our studies. We find that the resonances can induce large fluctuations of the Higgs field which destabilize the electroweak vacuum. Our considerations thus provide an upper …

Particle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)High Energy Physics::LatticePhysics beyond the Standard ModeleducationFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics114 Physical sciences01 natural sciencesUpper and lower boundsInstabilityGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)inflation Higgs0103 physical sciences010306 general physicsPhysicsCoupling010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyElectroweak interactionAstronomy and AstrophysicsInflatonHigh Energy Physics - PhenomenologyHiggs fieldHiggs bosonHigh Energy Physics::ExperimentAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of Cosmology and Astroparticle Physics
researchProduct

Early Universe Higgs dynamics in the presence of the Higgs-inflaton and non-minimal Higgs-gravity couplings

2017

Apparent metastability of the electroweak vacuum poses a number of cosmological questions. These concern evolution of the Higgs field to the current vacuum, and its stability during and after inflation. Higgs-inflaton and non-minimal Higgs-gravity interactions can make a crucial impact on these considerations potentially solving the problems. In this work, we allow for these couplings to be present simultaneously and study their interplay. We find that different combinations of the Higgs-inflaton and non-minimal Higgs-gravity couplings induce effective Higgs mass during and after inflation. This crucially affects the Higgs stability considerations during preheating. In particular, a wide ra…

Particle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics beyond the Standard Modelmedia_common.quotation_subjectHigh Energy Physics::LatticeFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences114 Physical sciencesGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)Metastability0103 physical sciencesphysics of the early universeinflationparticle physicscosmology connectionELECTROWEAK VACUUM010306 general physicscosmology of theories beyond the SMmedia_commonInflation (cosmology)PhysicsSTABILITY010308 nuclear & particles physicsElectroweak interactionHigh Energy Physics::PhenomenologyAstronomy and AstrophysicsBOSONInflaton115 Astronomy Space scienceUniverseHigh Energy Physics - PhenomenologyHiggs fieldHiggs bosonHigh Energy Physics::ExperimentAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct